Targeted cybridization in citrus: transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness

Publication Overview
TitleTargeted cybridization in citrus: transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness
AuthorsGuo W, Prasad D, Cheng Y, Serrano P, Deng X, Grosser J
TypeJournal Article
Journal NamePlant cell reports
Volume22
Issue10
Year2004
Page(s)752-758
CitationGuo W, Prasad D, Cheng Y, Serrano P, Deng X, Grosser J. Targeted cybridization in citrus: transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness. Plant cell reports. 2004; 22(10):752-758.

Abstract

CMS (cytoplasmic male sterility) can be controlled by the mitochondrion genome in higher plants, including Satsuma mandarin. Somatic fusion experiments in citrus combining embryogenic callus protoplasts of one parent with leaf protoplasts of a second parent often produce cybrid plants of the leaf parent, a phenomenon occurring most often with interspecific fusion combinations. In an attempt to practically exploit this cybridization phenomenon, we conducted somatic fusion experiments combining embryogenic suspension-derived protoplasts of Satsuma mandarin, Citrus unshiu Marc. cv. Guoqing No. 1 (G1), a male-sterile cultivar, with leaf protoplasts of other seedy types-Hirado Buntan Pink pummelo (HBP) [Citrus grandis (L.) Osbeck], Sunburst mandarin (C. reticulata Blanco), Orie Lee hybrid (C. reticulata cv. Clementine x Murcott tangor), and Murcott tangor [C. reticulata x C. sinensis (L.) Osbeck], respectively-in an attempt to generate seedless cybrids by the targeted transfer of CMS. The genetic identities of regenerated plants from all four parental combinations were determined by flow cytometry, SSR, CAPS (or PCR-RFLP), RFLP, and chloroplast-SSR analyses. Regenerated plants from the first three parental combinations were diploids, and the cybrid nature of G1 + HBP with the mitochondrion genome from G1 and the chloroplast genome from HBP was confirmed, whereas the cybrid nature of the remaining two combinations was difficult to confirm because of the close phylogenetic relatedness of both fusion parents, as expected. Plants from G1 + Murcott were confirmed as tetraploid somatic hybrids. This is the first report of targeted citrus cybrid production by symmetric fusion with male-sterile Satsuma as the callus parent and other seedy cultivars as the leaf parents.
Stocks
This publication contains information about 5 stocks:
Stock NameUniquenameType
MurcottMurcottcultivar
Guoqing No 1Guoqing No 1cultivar
Hirado Buntan pummeloHirado Buntan pummelocultivar
Orie LeeOrie Leecultivar
SunburstSunburstcultivar
Features
This publication contains information about 6 features:
Feature NameUniquenameType
CAC23.1CAC23.1genetic_marker
nad1 exon Bnad1 exon Bgenetic_marker
nad1 exon Cnad1 exon Cgenetic_marker
NTCP9.2NTCP9.2genetic_marker
psaIpsaIgenetic_marker
rbcL.1rbcL.1genetic_marker
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2004
Published Location|||
Language Abbreng
KeywordsCitrus unshiu, mandarins, satsumas, Citrus maxima, pummelos, Citrus reticulata, tangerines, Citrus sinensis, oranges, seedless varieties, cybrids, interspecific hybridization, somatic embryos, callus, protoplasts, diploidy, in vitro regeneration, micropropagation, nucleotide sequences, molecular sequence data
Cross References
This publication is also available in the following databases:
DatabaseAccession
AGL: USDA National Agricultural LibraryAGL:3631436
PMID: PubMedPMID:14730385