A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers

Publication Overview
TitleA new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers
AuthorsGulsen O, Uzun A, Canan I, Seday U, Canihos E
TypeJournal Article
Journal NameEuphytica
Volume173
Issue2
Year2010
Page(s)265-277
CitationGulsen O, Uzun A, Canan I, Seday U, Canihos E. A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica. 2010; 173(2):265-277.

Abstract

Sequence-related amplified polymorphism (SRAP), simple sequence repeats (SSR), inter-simple sequence repeat (ISSR), peroxidase gene polymorphism (POGP), resistant gene analog (RGA), randomly amplified polymorphic DNA (RAPD), and a morphological marker, Alternaria brown spot resistance gene of citrus named as Cabsr caused by (Alternaria alternata f. sp. Citri) were used to establish genetic linkage map of citrus using a population of 164 F₁ individuals derived between ‘Clementine' mandarin (Citrus reticulata Blanco ‘Clementine) and ‘Orlando' tangelo' (C. paradisi Macf. ‘Duncan' × C. reticulata Blanco ‘Dancy'). A total of 609 markers, including 385 SRAP, 97 RAPD, 95 SSR, 18 ISSR, 12 POGP, and 2 RGA markers were used in linkage analysis. The ‘Clementine' linkage map has 215 markers, comprising 144 testcross and 71 intercross markers placed in nine linkage groups. The ‘Clementine' linkage map covered 858 cM with and average map distance of 3.5 cM between adjacent markers. The ‘Orlando' linkage map has 189 markers, comprising 126 testcross and 61 intercross markers placed in nine linkage groups. The ‘Orlando' linkage map covered 886 cM with an average map distance of 3.9 cM between adjacent markers. Segregation ratios for Cabsr were not significantly different from 1:1, suggesting that this trait is controlled by a single locus. This locus was placed in ‘Orlando' linkage group 1. The new map has an improved distribution of markers along the linkage groups with fewer gaps. Combining different marker systems in linkage mapping studies may give better genome coverage due to their chromosomal target site differences, therefore fewer gaps in linkage groups.
Features
This publication contains information about 614 features:
Feature NameUniquenameType
SI238SI238genetic_marker
SI239SI239genetic_marker
SI241SI241genetic_marker
SI242SI242genetic_marker
SI244SI244genetic_marker
SI246SI246genetic_marker
SI247SI247genetic_marker
SI248SI248genetic_marker
SI250SI250genetic_marker
SI251SI251genetic_marker
SI252SI252genetic_marker
SI253SI253genetic_marker
SI255SI255genetic_marker
SI259SI259genetic_marker
SI260SI260genetic_marker
SI263SI263genetic_marker
SI264SI264genetic_marker
SI265SI265genetic_marker
SI267SI267genetic_marker
SI268SI268genetic_marker
SI269SI269genetic_marker
SI270SI270genetic_marker
SI271SI271genetic_marker
SI272SI272genetic_marker
SI273SI273genetic_marker

Pages

Featuremaps
This publication contains information about 2 maps:
Map Name
Citrus-Orlando/Clementine-F1-Clementine-2010
Citrus-Orlando/Clementine-F1-Orlando-2010
Stocks
This publication contains information about 6 stocks:
Stock NameUniquenameType
DancyDancyaccession
DuncanDuncanaccession
OrlandoOrlandoaccession
ClementineClementineaccession
Citrus-Orlando/Clementine-F1-ClementineCitrus-Orlando/Clementine-F1-Clementinepopulation
Citrus-Orlando/Clementine-F1-OrlandoCitrus-Orlando/Clementine-F1-Orlandopopulation
Properties
Additional details for this publication include:
Property NameValue
Publication TypeJournal Article
Publication Date2010
Published Location|||
Language Abbreng
Publication Model[electronic resource].
URLhttp://dx.doi.org/10.1007/s10681-010-0146-7
KeywordsCitrus reticulata, clementines, genetic markers, microsatellite repeats, genetic polymorphism, peroxidase, random amplified polymorphic DNA technique, Alternaria alternata, plant pathogenic fungi, fungal diseases of plants, disease resistance, genetic resistance, linkage (genetics), chromosome mapping, Citrus paradisi, tangelos, interspecific hybridization, linkage groups, gene segregation, genome, sequence related amplified polymorphism, resistance genes, resistant gene analog, molecular sequence data